Elliptic complexes of first-order cone operators: ideal boundary conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Resolvents of Elliptic Cone Operators

We prove the existence of sectors of minimal growth for general closed extensions of elliptic cone operators under natural ellipticity conditions. This is achieved by the construction of a suitable parametrix and reduction to the boundary. Special attention is devoted to the clarification of the analytic structure of the resolvent.

متن کامل

Adjoints of Elliptic Cone Operators

We study the adjointness problem for the closed extensions of a general b-elliptic operator A ∈ x Diffmb (M ;E), ν > 0, initially defined as an unbounded operator A : C∞ c (M ;E) ⊂ x L b (M ;E) → xL b (M ;E), μ ∈ R. The case where A is a symmetric semibounded operator is of particular interest, and we give a complete description of the domain of the Friedrichs extension of such an operator.

متن کامل

A Degree Theory for Second Order Nonlinear Elliptic Operators with Nonlinear Oblique Boundary Conditions

In this paper we introduce an integer-valued degree for second order fully nonlinear elliptic operators with nonlinear oblique boundary conditions. We also give some applications to the existence of solutions of certain nonlinear elliptic equations arising from a Yamabe problem with boundary and reflector problems.

متن کامل

First Order Conditions for Ideal Minimization of Matrix-Valued Problems

The aim of this paper is to study first order optimality conditions for ideal efficient points in the Löwner partial order, when the data functions of the minimization problem are differentiable and convex with respect to the cone of symmetric semidefinite matrices. We develop two sets of first order necessary and sufficient conditions. The first one, formally very similar to the classical Karu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2018

ISSN: 0025-584X

DOI: 10.1002/mana.201600482